Toomre Instability and the
formation of gravitationally-
bound gas clouds



Stars form in giant molecular clouds

e |n Milky Way, 1/3 of current star formation occurs in 33 GMCs
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The mass spectrum of GMCs

Milky Way GMC mass function
(fiducial model based on Williams & McKee 97 data)
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Most star formation
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Increasingly massive star-forming clumps with
increasing redshift
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Gas fractions are elevated at high redshift
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Other illustrations of High redshift
redshift evolution

Nearby galaxies

“ typical MW-mass

" galaxy at z=1.6
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SBa massive SF’ing galaxies at'z=1-3
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Tracing progenitors of MW-mass galaxies using
comoving number density

At high z, galaxies
are:

» smaller (even at
same mass)

» clumpier (esp. in UV
— young stars)

» bluer (younger
stellar populations,
higher SFRs)
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Swing amplification



Swing amplification

Leading local perturbations

unwind and are amplified

Amplification can be factor

~10-100 (disks respond strongly!)

Amplification strongest when disk

is barely Q-stable, Q~1-2

Swing-amplified perturbations
likely explain most observed

spiral structure

- - _ CR- —'"-.,‘._
| !, ‘(@ {rM))
1 2 3

Figure 6.19 Fvolution of a packet of leading waves in a Mestal disk with @ — 1.5 and
& — 1/2 (equal contributions frem the disk and the rigid halo to the flat circular-specd
curve), Contours represent fixed fractional excess surface densities; since the calculations
are based on linesar perturbation theory, the amplitude normalization s arbitrary. Con-
tours in regions of depleted surface density are not shown. The {ime nverval beuwween
diagrams is one-half of a rotation period at corotation. LR, CR, and OLR denote the
racdil of the inmer Lindblad resonance, the corotation resonance, and the onter Lindblad
resonance,  From Toomre (1981), @© Cambridge University Press 1081, Reprinted by
permission of Cambridge University Pross,



Result of swing amplitication depends on whether
perturbations are local (flocculent) or global (grand design)
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Figure 15.2: Stable disk.simulation. Initially, this disk has Q ~ 1.26, suffcient to curb local instabil- Figure 15.3: Tidal encounter between the disk in Fig. 15.2 and a companion of 10 the total mass.
ities. The galaxy model includes a bulge and a halo (not shown); the disk is 15% of the total mass. This compaion approached on a parabolic initial orbit and reached an apocenter of ~ 9 disk scale
Each frame is 15 disk scale lengths on a side; times are given in units of the rotation period at ~ 3 lengths at ¢t = 1.5. Each frame is 24 scale lengths on a side; times are given in units of the rotation

disk scale lengths. period at ~ 3 scale lengths.

Barnes spiral structure trailing in both cases, in agreement with observations



Swing resonance

pitch angle

(>90° for
Q leading)

winding tends to initial leading

make trall perturbation

. . do 2A
Homework: Perturbation unwinds at rate — =
dt 1+ 4A2¢2
1 _dS B
where A = ZRE = Oort constant, quantifies shear

(how much Q changes with R)



Swing resonance (continued)

d_a _ 2A maximum as perturbation “swings’ from leading
dt 1 +4A2t2  totrailing (t=0)

Then, swing rate is 2A ~ Q ~k. (show for representative examples,
e.qg. flat rotation curve)

Temporary near match between 2A and k (both in same sense of rotation)
enhances effect of gravitational force from the perturbation on stellar orbits —
and the contribution of the stars’ own gravity to the perturbation.

[Note: absent resonance, rotation would tend to move stars out of perturbation.]

—> swing amplification

Swing amplification + winding by differential rotation = formation of trailing

spirals



Swing resonance (continued)

Other intuitive way to think about swing amplification:

In rotating disk, epicycles with frequency k stabilize generic long-
wavelength modes (Toomre analysis).

Absent rotation, long-wavelength modes are gravitationally
unstable and grow (Jeans analysis).

The swing resonance picks up particular perturbations for which
the stabilizing effects of rotation are reduced, allowing them to
grow in a manner analogous to the Jeans case.

The perturbations then get wound into trailing spirals by
difterential rotation.



